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Multivariate statistical methods in battery research
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Abstract

The use of multivariate statistical methods in battery research is developed with examples drawn from the literature and unpublished
work by the authors.

The techniques discussed may be described in general as, data reduction, cluster analysis and regression methods for prediction.
Individually or collectively these represent the three main areas of interest to battery researchers.

Data reduction permits the visualization of the relationship between samples which are characterized by multiple measured variables.
Cluster analysis extends this process to examine any natural groupings existing in the samples, based on the variables measured, and
multivariate prediction is a calibration technique permitting the modelling of complex non-linear systems.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

As we are all aware it is a relatively straightforward pro-
cedure to represent the relationship between two variables,
such as capacity and time for a cell, on a scatterplot in two
dimensions.

As an alternative, this relationship can be represented by
vectors in two dimensions, where the cosine of the angle
between the vectors expresses the correlation between the
variables. For a perfect correlation between the two variables
the vectors have an angle of 0◦ between them with a cosine
of one. For two uncorrelated variables the angle between
the vectors is 90◦ and the cosine is zero, these vectors are
said to be orthogonal. With a third variable, say temperature,
we could present the scatterplot as a 3D projection in two
dimensions. However, for four or more variables, there is no
direct way of showing the relationship.

We could, of course, examine the scatterplots for all pairs
of data as a simple way of looking at the data. For a number
of variables and a number of cells this would rapidly become
very confusing. For one cell with seven measured variables
we would need to examine 21 scatterplots.

An examination of such plots can be misleading as
only examining the variables in pairs could easily obscure
any structure present in the original multi-dimensional
space.
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The solution lies in a variety of techniques known as
mapping or ordination techniques. These techniques seek to
represent the original multi-dimensional space in a reduced
number of dimensions while, as far as possible, retaining
the original structure. These techniques are used to produce
a two-dimensional map of the original multi-dimensional
space. It is possible to represent the original multi-
dimensional space in three dimensions, but until quite
recently this has been uncommon.

Consider the data ofFig. 1. FeS2 (pyrite) has been pro-
posed as a cathode material in lithium secondary battery
systems[1]. Pyrite is an abundant mineral and its commer-
cial extraction usually presents little serious mining prob-
lems. The quality of pyrite can vary dramatically among
sources and, just as likely, between different lots from the
same source. This is, in part, due to the variable genesis of
the mineral, even between geologically related sites. Differ-
ences in trace element composition may vary spectacularly
between pyrite deposits from geologically related sites sep-
arated by their geographical age. The major advantage of
natural pyrite as a cathode material is its low cost. The repro-
ducibility of the cathode behaviour is improved with pyrite
of a uniform physical size and chemical composition.

The data inFig. 1 is plotted in three-dimensional space.
For n variablesn-dimensional space would be required.
The samples are scattered in this space. By a manner
analogous to linear regression inn-dimensions a vector is
found which describes as much of the difference (variance)
between the samples, as possible. This is called the first
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Fig. 1. Representation of trace element impurities in a naturally occurring
FeS2 cathode material. Data points (�) are plotted for the copper, arsenic
and cadmium concentrations of pyrite samples from different locations.

principal component or PC1. Samples X and Y differ most
along PC1. Each sample can then be projected onto PC1
to identify a co-ordinate along this axis. PC1 is not usually
sufficient to describe all the variations between the samples.
A second principal component, PC2, is required to describe
the differences between samples A and B. There are two
constraints on PC2:

(a) PC2 should be perpendicular to PC1.
(b) PC2 should explain as much as possible of the remaining

differences.

Further principal components may be constructed within
the constraints that they should all be orthogonal and explain
as much as possible of the remaining variance. Theoretically
there are as many principal components as variables. The
aim of principal component analysis (PCA) is to explain as
much of the data structure as possible with as few princi-
pal components as possible. The construction of principal
components removes the covariance between variables, and
reduces the number of variables needed to model any re-
sponse. If the analysis can explain the differences between
samples in two or three principal components we have suc-
ceeded in data reduction and this may be considered to be
a major attraction of PCA.

The main disadvantage of PC’s is that they have no direct
physical meaning. This will, of course, make visualisation
and interpretation of score plots difficult, i.e. we can see if
samples differ from each other but not why.

Loadings plots are the link between the measured
variables and principal component space. In constructing a
score plot the position of the samples relative to each other
is presented in principal component space rather then in
the original variable space. Loadings plots are essentially

projections of the unit vectors of the original variable space
onto principal component space. Variables which appear
close together in the loadings plot will be highly corre-
lated whereas variables which appear at opposite ends of
the origin in a loadings plot will be negatively correlated.
There is no correlation between variables which are well
separated in a loadings plot. Like score plots, loadings plots
are normally presented as two-dimensional plots which
represent the analyst’s window into PC space. It is not im-
mediately obvious that points which appear close together
in a two-dimensional plot may be well separated along a
third dimension.

2. Principal component analysis

To help clarify these points we will employ an unusual,
but highly relevant example, drawn from unpublished work
by the authors, on the identification of possible new cathode
materials drawn from naturally occurring minerals.

Our data set will comprise 137 naturally occurring min-
erals with the following input variables:

1. relative molecular mass, RMM (kg);
2. entropy of formation, entropy (J K−1 mol−1);
3. molar volume (m3);
4. enthalpy of formation,�H (J mol−1);
5. free energy of formation,�G (J mol−1);
6. 2θ values for the three main XRD peaks;
7. total oxidation numbers of the cationic elements (all

summed as positive values).

An examination of the score plot for PC1 and PC2 inFig. 2
shows that certain minerals and compounds already well
known as cathode materials in a variety of battery systems
may be found grouped on the right hand side of the plot.
This may have been influenced by including the free energy

Fig. 2. Scores plot of PC1 vs. PC2 for proposed cathode materials.
Recognised cathode materials are identified as solid squares (�).
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Fig. 3. Loadings plot for PC1 and PC2.

of formation in the analysis. The loadings plot inFig. 3
shows, as to be expected, that the free energy of formation
and the enthalpy of formation are highly correlated (hardly
surprising in view of the thermodynamic function which
relates them). In fact all the variables have negative loadings
along PC1 and they all serve to separate the minerals along
PC1. The spread of samples along PC2 is explained by the
positive and negative loadings of the variables above and
below the origin.

If the analysis is repeated without the three thermody-
namic variables a similar score plot is generated inFig. 4.
The loadings plot shown inFig. 5 shows that the variable
‘XRD 3’ has the most negative loading along PC1 followed
closely by the remaining variables. The loadings of the vari-
ables along PC2 are greatest for ‘XRD peak 1’ (positive
loading) and for ‘total oxidation’ (negative loading).

We have established that the scores plot for PC1 and PC2
in Fig. 2 may be useful in identifying possible cathode ma-

Fig. 4. Scores plot of PC1 vs. PC2 for proposed cathode materials.
Recognised cathode materials are identified as solid squares (�).

Fig. 5. Loadings plot for PC1 and PC2.

terials based on a set of variables which are readily avail-
able from published data sets. Because of the expected ef-
fect including the thermodynamic variables might have on
the groupings in the scores plot it is reasonable to re-analyse
the data and perform another PCA with the thermodynamic
variables eliminated from the data set.

It is apparent from an examination ofFigs. 2 and 4that
excluding the thermodynamic variables from the analysis
has had little effect on the grouping of the cathode materials
in the scores plot. The next stage in a search for viable new
cathode materials would be an identification of the other
minerals situated close to the identified cathode materials
in the score plot and an evaluation of their performance in
prototype cells.

A recent application of PCA concerns the characteriza-
tion of expanders for lead–acid batteries[2] using 128 mea-
sured variables including chemical composition and physi-
cal properties.

3. Cluster analysis

The basic principle upon which all clusters analyses are
based is very simple. All of them attempt to group samples or
objects into groups of similar objects called clusters. Objects
are placed into different clusters such that members of any
cluster are more similar to each other in some way than they
are to members of any other cluster.

The major problem associated with cluster analysis is
that the techniques always produce clusters even in circum-
stances where there are no natural groupings in the data.
The analysis actually imposes a cluster structure on the data.
The success of the method will depend entirely on know-
ing whether the clusters produced are real ones or simply
artefacts of the method.

An example, drawn from unpublished work by the au-
thors, on an investigation into trace element concentrations
in pyrite and their possible effect on battery performance
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Fig. 6. Scores plot for European pyrite.

will be valuable in a consideration of cluster analysis. It has
been reported previously[1] that the quality of pyrite sam-
ples is wholly dependent on their geological age and loca-
tion. A large number of pyrite samples from locations all
over Western Europe were analysed for trace impurities by
the authors.

The scores plot inFig. 6 shows that pyrite from different
locations, and of different age may be grouped based on
a PCA analysis with concentrations of trace elements as
variables. There are a number of well defined clusters which,
when the points in the score plot are identified by different
symbols, are quite apparent. It is questionable if some of the
clusters would have been so readily identified if all samples
had the same symbol in the score plot.

It is usual to be rather more quantitative when analysing
samples for clustering. The most straightforward method
employs hierarchical agglomerative methods in which mem-

Fig. 7. Dendrogram for European pyrite.

bers are merged using a single-linkage rule. The dendrogram
in Fig. 7 was produced using a single linkage rule (some-
times referred to as the nearest neighbour rule). In the den-
drogram, at the lowest level, all the items being clustered
are independent and at the highest level all are joined into
one group. Ifn items are to be clustered, all agglomerative
methods requiren − 1 steps to complete the clustering.

All hierarchical agglomerative methods produce non-
overlapping clusters which are nested; that is, each cluster
is included or subsumed in large clusters at higher levels
of similarity. This is clearly illustrated inFig. 7. where a
single cluster (all samples in the data set) is produced at the
41.28 level and between the 80.43 and 60.85 levels there
are a number of clusters identified which may be compared
with the easily identified clusters inFig. 6.

Only a single pyrite sample (marked (�) on the dendro-
gram) from the group ‘Campiano 212’ has been incorrectly
identified as a member of the ‘El Kettara’ group. In fact, by
simple visual inspection, the sample is less representative of
the Campiano 212’ group than it is of the ‘El Kettara’ group.

One of the main problems in the validity of cluster anal-
ysis is, whether the clusters ‘identified’ by the method
represent natural groups or whether the clusters are merely
produced(rather than identified) as a consequence of the
clustering rules used. A cluster solution should be. viewed
with caution and great care should be exercised before
claiming the discovery of any natural clusters.

4. Prediction

Partial least squares (PLS), alternatively known as projec-
tion of latent structures, is a powerful multivariate statistical
linear regression technique which extracts the relationship
between an array of output variables and an array of input
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variables, where a high degree of correlation exists between
the output and input variables. PLS differs from principal
component regression (PCR) in that the reduction in the
dimensionality of the raw data is based on both the input
(henceforth referred to as theX matrix) as well as the output
matrix (henceforth referred to as theYmatrix) (for PLS) and
not just for the input data (for PCR). As a result, the main
principal components in PLS cannot be arrived at in one
singular value decomposition (SVD) step as can be done
in PCR. Instead the principal component that lines up most
of the deflatedX andY data matrices is then extracted. The
cycle repeats itself until enough PLS principal components
have been extracted.

A valuable example of using PLS in power sources work
is the prediction of ‘state of charge’ (SOC) from measure-
ments of the electrochemical impedance spectra (matrixX)
and state of charge (matrixY) [3] for nickel–metal hydride
batteries.

Results from this method, using a cross validation proce-
dure to test the predictive capability of the method suggest a
root mean square error of prediction (RMSEP) of 7%. Un-
fortunately the predictive power of the model decreases at
SOC values of less than 10%.

Fuzzy logic methodology has been used to determine the
‘state of health’ of primary lithium/sulfur dioxide cells[4]
from impedance data. Other techniques of value in predicting
failure in secondary batteries are the use of artificial neural
networks[5], which are inspired by the biological behaviour
of neurones.

The power of both these latter prediction methods lies in
their ability to model complex non-linear systems without
the need for explicit mathematical models[6].

Multivariate methods have been applied to the lifetime
and performance prediction of lead–acid[7–9] and Ni–Cd
[10] batteries. New metal hydrides have been designed for
NiMH batteries using PLS-pattern recognition methods[11].

All of these methods are extremely powerful and provide
a link between multivariate data, the impedance spectrum or
cycling data, and SOC or cycle life respectively.

An example of SOC prediction using impedance spectra,
from unpublished work by the authors, with a reduced data
set for clarity will serve to illustrate the method for a small
number of samples and variables.

The prediction problem concerns the estimation of the
relationship between a measuredX and a propertyY and
the use of this relationship to estimate an unknownY from
an observedX. At no point in the calibration or prediction
procedure does the model require the input of an explicit
mathematical relationship betweenX andY. The multivari-
ate character appears when the impedance is measured at
many different frequencies jointly and the overall impedance
spectrum corresponds to the measuredX. The power of a
PLS prediction model lies in its ability to predict, with ac-
ceptable confidence, the valueY when it has a non-linear
relationship withX. If the aim were to predict the SOC from
batteries or cells stored or discharged at alternate tempera-

tures then PLS models would need to be constructed from
a calibration set of batteries stored or discharged under a
similar temperature regime. The effects of ageing and abuse
have not been investigated in this communication but work
is proceeding, in the authors laboratory, to determine the ef-
fects of variable degrees of abuse and variable age on the
predictive power of PLS models. In practice, many more
samples would be required for construction of a statistically
robust model but limiting this example to six samples and
one test cell allows for a more easily viewed data-set. The
measurements were performed on six standard 2400 mAh
NiMH cells using a Solartron 1287 electrochemical interface
coupled to a Solartron 1255 Frequency Response Analyser
for electrochemical impedance spectroscopy. Following ini-
tial cycling at 0.25 C (based on the nominal capacity) the
impedance measurements were recorded at different SOC’s
for a discharge load of 0.25 C.

The frequency range used for the data analysis was be-
tween 0.5 and 250 Hz whereas the impedance measurements
were measured over a much wider range. Impedance mea-
surements were made with an ac signal of amplitude 100 mA
in galvanostatic mode.

Lower frequency measurements were avoided as they are
slow and the SOC may drop appreciably during the scan.

Additionally for rapid ‘in service’ determinations faster
higher frequency measurements are desirable. SOC’s at the
conclusion of each impedance measurement were calcu-
lated from the total time of discharge. Changes in the SOC
of <0.75% were avoided by omitting low frequency mea-
surements at the discharge load of 0.25 C.Fig. 8 demon-
strates that there is an obvious difference in the impedance
responses, for the real part of the impedance, at different
SOC’s for a discharge load of 0.25 C.

In the following illustrative example of the PLS regres-
sion and prediction method it is important to note that no
information regarding cell voltage or discharge load have
been used in formulating the multivariate model.

In most cases knowledge of the cell potential and
discharge current for a galvanostatic discharge would be
sufficient to determine the SOC. In practice this would be
difficult for a flat discharge profile and for a cell with an un-
known history. Our goal will be to predict the SOC from an
impedance spectrum and to further validate the predictive
power of the model using a test spectrum, which was not
used in the construction of the original model. The method
used to construct the regression equation is known as full
cross validation. The frequency spectrum for a single battery
is automatically removed from the data set and the SOC for
that battery is predicted using a model constructed from the
remaining batteries. The sample is removed to ensure that
the measured SOC does not influence the prediction. An iter-
ative procedure then repeats this procedure for all the objects
in the data set. The result of this modelling is presented in
Fig. 9. Essentially this modelling by a ‘take one out’ proce-
dure produces a best fit for all the samples in the calibration
set. The root mean square error, between the measured and
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Fig. 8. The real part of the impedance for different states of charge measured at 0.25 C.

predicted values indicates that this model predicts the SOC
of the cell, without SOC and discharge load input parame-
ters, with an average error of 1.5%. The broken line inFig. 9
indicates the situation if the predicted value equalled the
measured value while the solid line is a linear least squares fit
for the ‘predicted versus measured’ SOC values. In this par-
ticular example SOC of less than 10% were poorly predicted
by the PLS model and, consequently were omitted from the
modelling and prediction. It may be that the poor predic-
tion of SOC towards the end of discharge is an indicator of

Fig. 9. Full cross-validated prediction for SOC with the complete data set.

extreme non-linear behaviour. An alternative model may be
possible for acceptable predictions of SOC less than 10%.

This RMSEP value of 1.5% gives an indication of the
predictive power of the model with a self-contained data set
which is implicit in any method involving cross validation.
No model can be considered of value in the sense of pre-
diction until it has been validated with a test set of batteries
which were not used in producing the calibration model. In
order to test the prediction power of the model our test set
will comprise a single cell of known SOC which will allow
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Fig. 10. Prediction of the SOC of the data set cells with a test cell of known SOC discharged at the 0.25 C rate.

Table 1
Predicted state of charge and standard deviations from the NiMH PLS
model

Sample (%) Predicted SOC (%) Deviation SOC (%)

100.00 104.03 15.56
84.50 82.08 13.12
52.30 46.95 13.67
31.70 42.71 11.01
12.50 12.77 15.35

Test 106.39 15.83

us to compare the predicted SOC with the known value. The
test cell (Table 1) had a known SOC of 93.5% which clearly
lies within the limits of the prediction (SOC(predicted) =
106±15.8%). This result shown inFig. 10is quite satisfac-
tory in view of the very small data set used to construct the
model.

5. Conclusions

There is valuable information hidden in your current or
historical data and multivariate analysis may be the key,
which unlocks it. The use of multivariate techniques is ex-
panding rapidly in a very large number of areas in the re-
search and development, manufacturing and marketing sec-
tors and it would seem appropriate that there is scope for a
more widespread use of the armoury of data reduction and
prediction techniques which are widely available through
many commercially available software packages.

The three techniques most widely used in multivariate
analysis

(i) principal component analysis,
(ii) cluster analysis,

(iii) partial least squares prediction,

have all been shown to have application in the research and
development of non-mechanical electrical power sources.
Principal component analysis may be a valuable tool in ex-
amining the viability of existing naturally occurring mate-
rials as potential electrode materials. Principal component
analysis has also been used to characterize expander mate-
rials employed in the plates of lead–acid batteries. Cluster
analysis has been demonstrated as a means by which natural
pyrite may be classified into groups, characterized by geo-
logical age and location, based on analyses of trace metal
impurity concentrations. Partial least squares prediction has
been successfully used by a number of investigators to pre-
dict the state of charge, of a variety of battery systems, from
their impedance spectra.

There is no fixed path for those who venture into multi-
variate work but rich rewards await those who look in the
right place for results. Decisions have to be made continu-
ously, and they have to be made with good judgement and
usually on electrochemical or battery grounds.

The first decision relates to the variables to be studied, and
here may lie the first problem. If a variable is omitted which
ought to be included an important vector may be trivialised
to the point were it appears arbitrary or unintelligible when,
in its full form, it has a ready interpretation. Conversely if a
variable, which adds little to the investigation, is included,
but is nevertheless highly correlated with the other variables,
a clear result may be obscured.

A final cautionary remark that should be part of the aware-
ness of anyone employing multivariate analysis in their work
is an appropriate conclusion to this examination of multi-
variate methods in battery research.

The hypotheses evolved by multivariate methods are
like any other and should only be accepted if they can be
co-ordinated with other knowledge and can be confirmed
by experimental evidence.
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